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Problem Setup

Probabilistic Circuits (PCs) [6] are a powerful framework for describing Tractable Probabilistic Models

(TPMs), which allow various tractable inference routines, including marginalization, conditioning, most-

probable explanation, expectations, etc.

Similar to Probabilistic Graphical Models (PGMs), we can distinguish between parameter learning and

structure learning when learning PCs from data.

In PCs, structure learning is generally less principled than in PGMs. Previous PC structure learners are

often based on heuristics rather than principled objectives, for instance:

LearnSPN [2] uses top-down multi-clustering to lay out the PC structure;

ID-SPN [5] augments LearnSPN by using expressive distribution models as sub-modules;

Cutset networks (CNets) [4] exploit decision tree algorithm and use Chow-Liu trees (CLTs) as leaf

models.

None of the above approaches declare an explicit objective for structure learning. Moreover, they often

rely on a large number of hyper-parameters, which need to be tuned on a separate validation set.

CONTRIBUTION

We propose a principled avenue to PC structure learning, putting particular emphasis on elegance

and simplicity.

We derive Bayesian structure scores for deterministic PCs by equipping parameters with Dirichlet

priors, yielding the well-known Bayes-Dirichlet (BD) score.

In addition, we present a correction for the Bayesian information criterion (BIC), a viable and

efficient alternative to the BD score.

We employ the BD and the BIC scores with cutset learning, a simple and fast structure learner

for PCs.

Our approach has only one single hyper-parameter governing the Dirichlet prior, the equivalent

sample size (ESS), which we keep fixed to 0.1 throughout experiments, rendering our method

effectively hyper-parameter-free.

Moreover, we embed our structure learner within a structural expectation maximization (EM)

algorithm, which has not been applied to PCs before. This consistently improves test

log-likelihood over single PCs and delivers mixture models close to or surpassing state-of-the-art.

Bayes-Dirichlet Score for Deterministic PCs

Let us consider a training setD = {x(n)}Nn=1 of i.i.d. samples and a distribution p(x |Θ, w,G)where G =
(V, E) is the PC computational graph, Θ = {θL}L∈V parameters of the leaf nodes and w = {wS}S∈V
sum weights. The basic idea of the Bayes-Dirichlet score is to :

1. equip Θ and w with a Dirichlet prior distribution

p(Θ, w | G) =
∏
S∈V

p(wS)
∏
L∈V

p(θL) =
∏
S∈V

1
B(αS)

∏
N∈in(S)

w
αSN−1
SN

∏
L∈V

p(θL). (1)

2. derive the marginal likelihood of G by marginalizing the parameters from the Bayesian model:

BPC(G) =
∫ ∫

p(Θ, w | G)
∏
x∈D

p(x |Θ, w,G) dΘ dw. (2)

The key insight to computing the BD score in deterministic PCs is the notion of induced tree [7], a

subgraph of G obtained by

removing all inputs except one from each sum node in G, and
removing all nodes which are rendered unreachable from the root.

In decomposable and deterministic PCs, there can be at most one non-zero term, corresponding to

a particular induced tree τx. Based on the so-called tree decomposition, the PC distribution can be

written as

p(x |Θ, w,G) =
∏

SN∈E

w
1[SN∈τx]
SN

∏
L∈V

p(x | θL)1[L∈τx] (3)

With the assumption of parameter-consistent determinism and the parameter independence, we rewrite

eq. (2) as

BPC(G) =
∏
S∈V

∫
1

B(αS)

∏
N∈in(S)

w
αSN+n[SN]−1
SN dwS

∏
L∈V

∫
p(θL)

∏
x∈DL

p(x | θL) dθL

 , (4)

which takes essentially the same form as eq. (23) in [3] and yields the widely know Bayes-Dirichlet

score ∏
S∈V

 Γ(αS)
Γ(n[S] + αS)

∏
N∈in(S)

Γ(n[SN] + αSN)
Γ(αSN)

 , (5)

where n[SN] :=
∑

x∈D 1[SN ∈ τx] counts how often the edge between S and N appears in an induced

tree throughout the dataset, αS :=
∑

N∈in(S) αSN and n[S] :=
∑

N∈in(S) n[SN].

Structural Expectation Maximization

Since the Bayesian structure score is the (marginal) likelihood of the structure, it can naturally be incor-

porated in larger probabilistic frameworks such as structural expectation-maximization [1]. Specifically,

we consider mixtures of PCs of the form

pmix(x) =
K∑

k=1

ak p(x |Θ, w,G)

where ak ≥ 0 and
∑

k ak = 1, and K is the number of components.

The structural E-step consists of computing the responsibilities of each component proportional to

γk ∝ ak p(x | G), where we use the posterior predictive distribution to average over parameters.

The responsibilities are then used in the structural M-step as (i) weighted average to update ak and

(ii) as fractional samples within our cutset learner.

Score-based Cutset Learning
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Figure 1. A CNet over binary random variables

X = {X1, X2, X3, X4, X5}. Inner nodes {C1, C2, C3, C4} are
decision nodes whose left (resp. right) branches represent

conditioning on state 0 (resp. 1). The leaves of the CNet are
CLTs {(Ti, Θi)}5

i=1.

Cutset networks (CNets) [4] improve CLTs by em-

bedding them in a hierarchical conditioning pro-

cess. A CNet is a binary decision tree, whose deci-

sion nodes correspond to some variable in X and

whose leaves are CLTs over the undecided vari-

ables. Further, the outgoing edges of decision

nodes are equipped with normalized weights. For

any sample x, the probability assigned by the CNet
is the product of weights on the path from root to

the selected CLT leaf (following decisions accord-

ing to the values in x), times the probability the

CLT assigns to the undecided variables.

Algorithm 1 Score-based Cutset Structure Learning

Require: A training set D = {x(n)}N
n=1 over binary RVs X; number of candidate conditioning nodes λ.

Ensure: a CNet C∗ representing a deterministic PC.

1: function Cut(X,D, λ)

2: T ∗ ← LearnCLT(X,D)
3: X̃← SelectBestCandidates(X,D, λ)
4: X∗, C∗,Dl,Dr ← SelectBestCut(X̃,D)
5: if S(T ∗) > S(C∗) then
6: return T ∗
7: else

8: C∗ ← CNet(X∗,Cut(X\X∗,Dl, λ),Cut(X\X∗,Dr, λ))
9: return C∗
10: end if

11: end function

1: function SelectBestCut(X̃,D)
2: for all X ∈ X̃ do

3: Dl,Dr ← Split(X,D)
4: Tl ← LearnCLT(X\X,Dl)
5: Tr ← LearnCLT(X\X,Dr)
6: C ← CNet(X, Tl, Tr)
7: S(C)← score(C)
8: end for

9: X∗ ← best X with the highest S(C)
10: return X∗, C∗,Dl,Dr

11: end function

Experimental Results

Figure 2 shows visualizations of the learning time and test log-likelihoods of all structure learners for

each data set. We plot a Pareto frontier as a dashed line for each data set. The Pareto-efficient

methods on the line are emphasized with amplified “aura” markers. From Figure 2, we observe that

both CNetBD and CNetBIC appear to be Pareto-efficient on most data sets. Compared to other cutset

learners with the same greedy learning strategy, CNetBD and CNetBIC achieved leading performance

among fast methods. In comparison with more complex learners, CNet and CNetBIC still outperform

or are on par with Strudel and LearnSPN on many data sets.
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Figure 2. Accuracy and learning times of all structure learners on the 20 benchmark data sets. The optimal learners on

the Pareto curve are highlighted with bigger markers.

(a) Sampling results.

(b) Inpainting results.

Figure 3. Samples (a) and inpainting results (b) for Binary-MNIST for CNetBD (left), EM-CNetBD with 100 components

(middle) and 300 components (right). In (b), the original test images are shown in the top row; then in alternating rows the

images with missing part and reconstructions are shown.
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