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Introduction



Multi-Dimensional Classification (MDC)

In a nutshell

Multi-Dimensional Classification

▶ Each instance is characterized by multiple
class variables Y = {Y1, . . . , Yd} (d ≥ 2).

▶ Each class variable can take multiple (≥ 2)
values (rj = |Yj | ≥ 2, ∀1 ≤ j ≤ d).

A general MDC task

x1, x2, . . . , xm︸ ︷︷ ︸
x

h(x)
===⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

Feature Space
Class Space

Color Brand Type

White BMW Car

White Mercedes Truck

Yellow Lamborghni Supercar

.

.

.
.
.
.

.

.

.
.
.
.

Red/White Toyota Offroad

? ? ?

Table 1: Multi-dimensional vehicle image classification.
Adapted from [3].
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Multi-Dimensional Classification (MDC)

While MDC is hard, it may become harder!

Various types of features can coexist

▶ Numeric values.
▶ 0.6, 2.36, 17.85, . . .

▶ Binary values.
▶ 0, 1

▶ Ordinal values.
▶ Likert scale: Like (0), Like Somewhat (1),

Neutral (2), Dislike Somewhat (3), Dislike (4)
▶ Non-ordinal discrete signals.

▶ Color: Red, Blue, Yellow, Green, . . .
▶ Gender: Male, Female, . . .

World is multi-modal!

Figure 1: "A cat is playing with a dog."
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Probabilistic MDC

A General MDC Task

x1, x2, . . . , xm︸ ︷︷ ︸
x

h(x)
===⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

A Probabilistic MDC Task

x1, x2, . . . , xm︸ ︷︷ ︸
x

Modeling
====⇒ P (Y | X)

Inference
====⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

▶ Probabilities associated to predictions.
▶ Optimal predictions under different loss functions.
▶ How to capture the probabilistic relationships between class variables?

4



Probabilistic MDC

A General MDC Task

x1, x2, . . . , xm︸ ︷︷ ︸
x

h(x)
===⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

A Probabilistic MDC Task

x1, x2, . . . , xm︸ ︷︷ ︸
x

Modeling
====⇒ P (Y | X)

Inference
====⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

▶ Probabilities associated to predictions.
▶ Optimal predictions under different loss functions.
▶ How to capture the probabilistic relationships between class variables?

4



Probabilistic MDC

A General MDC Task

x1, x2, . . . , xm︸ ︷︷ ︸
x

h(x)
===⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

A Probabilistic MDC Task

x1, x2, . . . , xm︸ ︷︷ ︸
x

Modeling
====⇒ P (Y | X)

Inference
====⇒ y1, y2, . . . , yd︸ ︷︷ ︸

y

▶ Probabilities associated to predictions.
▶ Optimal predictions under different loss functions.
▶ How to capture the probabilistic relationships between class variables? 4



Background



Bayesian Network Classifiers (BNCs)

What is a Bayesian network (BN)?

B = (G,Θ)

▶ G = (V,E) is a DAG with V a collection of nodes associated to random variables (RVs) X.
▶ Θ = {Θi | 1 ≤ i ≤ m} is a collection of parameters

▶ encodes local conditional probability distributions (CPDs) {P (Xi | Pa(Xi)) | 1 ≤ i ≤ m} of X.

▶ B represents a joint probability distribution over X.

X1 X2

X3 X4 X5

Figure 2: PB = P (X1)P (X2 | X1)P (X3 | X1)P (X4 | X2, X3, X5)P (X5 | X2, X3)
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Bayesian Network Classifiers (BNCs)

Why using a Bayesian network (BN)?

Advantages of Bayesian Networks (BNs)

▶ Intuitive graphical formalisms of probabilistic relationships.
▶ Interpretable representations of uncertainties supported by probability theory.

(Multi-dimensional) BNCs are simply BNs applied to (multi-dimensional) classification problems.

X1 X2

Y1 Y2 Y3

Figure 3: An example (M)BNC over X = {X1, X2} and Y = {Y1, Y2, Y3}.
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Learning an (M)BNC

Learning an (M)BNC is essentially learning the underlying Bayesian network.

Structure Learning: Learning G from dataD
▶ Constraint-based

▶ Employ statistical tests to identify independencies between variables.
▶ Score-based

▶ Define a structure score metric (such as BD scores and the BIC score).
▶ Find a structure achieving the maximum score from the structure space.

Parameter Learning: Learning Θ from dataD
▶ Bayesian Learning

▶ Treat parameters as random variables and update Θ by using Bayes’ rule: p(Θ | D) =
p(D|Θ)p(Θ)

p(D)
.

▶ Maximum Likelihood Estimation (MLE)
▶ Pick parameters that maximize the model’s probability of generating D.
▶ Given enough data, uncover the real data-generating distribution P (X,Y).
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Learning an (M)BNC

Maximum Likelihood Estimation (MLE)

▶ Pick parameters to make the model to be close to the data-generating distribution P (X,Y).

However, classification is a discriminative or supervised task.

In an (M)BNC, what we need is the conditional distribution P (Y | X) of class variables.

Maximizing the Conditional Log-Likelihood (CLL)

Given dataD = {(xl,yl) | 1 ≤ l ≤ N}, the CLL is a discriminative objective function:

CLL(G,Θ | D) := log

N∏
l=1

pB(y
l | xl) = log

N∏
l=1

fB(x
l,yl)∑

y∈Y fB(xl,yl)
(1)

▶ Unfortunately, CLL does not decompose over G into a separate term for each variable.
▶ There is no closed-form solution for optimizing parameters to maximize the CLL.
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Generalized Bayesian Network Classifiers (GBNCs)



Research Questions

▶ How to discriminatively learn the parameters and the structure of a BNC?

▶ How to perform probabilistic inference to compute optimal predictions under different loss functions?
▶ How to handle mixed data, i.e., continuous and discrete feature variables coexist?

Structure Learning 

Parameter Learning Probabilistic Inference

Contiunous
Features Discrete Features
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Discriminative Parameter Learning

To enable the CLL decomposability

Structural constraints in GBNCs

▶ There is no directed edge from class variables to feature variables.
▶ There is a directed edge from any feature variable to any class variable.

X

Y3Y1Y2 Y4 Y5

Figure 4: An example GBNC over X and Y = {Y1, Y2, Y3, Y4, Y5}.
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Discriminative Parameter Learning

Proposition 1: CLL Decomposition
Under our structural constraints, the CLL can be simpilified as

CLL(G,Θ | D) =
N∑
l=1

d∑
j=1

logPB(y
l
j | pa(yj)l) (2)

▶ Πj = Pa(Yj) ∩Y, with the number of configurations of Πj as qj .
▶ Φj = Pa(Yj) ∩X.

The CLL can be further simplified as

CLL(G,Θ | D) =
N∑
l=1

d∑
j=1

qj∑
k=1:

1
πl
j
=πjk

logP
πjk

j (yl
j | ϕl

j) (3)
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Discriminative Parameter Learning

CLL(G,Θ | D) =
N∑
l=1

d∑
j=1

qj∑
k=1:

1
πl
j
=πjk

logP
πjk

j (yl
j | ϕl

j) (4)

▶ In words, we will need q = q1 + · · ·+ qd probabilistic models to represent the distribution PB(Y | X).
▶ One for each P

πjk

j (Yj | Φj) (1 ≤ j ≤ d, 1 ≤ k ≤ qj ).

▶ The probabilistic relationships between feature variables do not affect the CLL.
▶ Although we assume any Y ∈ Y is connected to all X ∈ X

▶ Learning a base probabilistic model Cπjk

j for each P
πjk

j (yj | ϕj) is essentially a feature selection!
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Discriminative Parameter Learning: Input Space Partitioning

How do we learn a base probabilistic model Cπjk

j ?

▶ ExtractDπjk

j fromD according to πjk.
▶ Train C

πjk

j usingDπjk

j by iteratively optimizing
∑N

l=1 logP
πjk

j (yl
j | ϕl

j).

Partitioning Training
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Discriminative Structure Learning

The probabilistic relationships between feature variables do not affect the CLL.

▶ Learning G is essentially learning the class subgraph GY .

A score-based structure learning approach

▶ Use a penalized CLL score as a (decomposable) structure score function:

S(G,Θ | D) = CLL(G,Θ | D) + PEN(G,Θ | D)

=

d∑
j=1

(CLL(GΠj ,Θj | D) + PEN(GΠj ,Θj | D))

=

d∑
j=1

S(GΠj ,Θj | D)

(5)

where PEN(GΠj ,Θj | D) = − logN
2

(rj − 1)qj .

▶ We can further prune the search space of potential Πj for Yj by using rules from [2].

14
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Mixed Data

Continuous and discrete feature variables coexist.

▶ How to handle discrete features?
▶ Λj = Pa(Yj) ∩XD .
▶ Treat discrete feature variables as "special" class variables.
▶ Use discrete features to do further input space partitioning!

Continuous Features Discrete Features Labels

Partitioning

Continuous Features Discrete Features Labels

15
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Inference in GBNCs

Given a loss function ℓ : Y ×Y → R+ and an input x ∈ X , the Bayes-Optimal Prediction (BOP) ŷ is

ŷ = argmin
y′∈Y

∑
y∈Y

ℓ(y,y′)P (y | x) (6)

Subset 0/1 Loss: ℓ0/1(y, ŷ) = 1y ̸=ŷ

Most Probable Explanation (MPE) Inference for Y.

ŷ = argmin
y′∈Y

∑
y∈Y

1y ̸=y′P (y | x) = argmax
y′∈Y

P (y′ | x) (7)

Hamming Loss: ℓHL(y, ŷ) =
∑d

j=1 1yj ̸=ŷj

Maximum A Posteriori (MAP) Inference for each Y ∈ Y.

ŷ = {ŷj | 1 ≤ j ≤ d}

where, ŷj = argmin
y′∈Yj

∑
y∈Yj

1y ̸=y′P (y | x) = argmax
y′∈Yj

P (y′ | x) (8)
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Inference in GBNCs

Algorithm 1 BOP under the subset 0/1 loss

Require: Test set T = {xl | 1 ≤ l ≤ L}, local probabilistic classifiers C, class subgraphGY
Ensure: The set of predictions TY = {ŷl | 1 ≤ l ≤ L}

1: Initialize TY ←− ∅
2: Initialize CPT ofGY : P (yjt | πjk)←− 0, with all j ∈ {1, 2, . . . , d}, t ∈ {1, 2, . . . , rj} and k ∈ {1, 2, . . . , qj}
3: for l = 1, 2, . . . , L do
4: for j = 1, 2, . . . , d do
5: for t = 1, 2, . . . , rj do
6: for k = 1, 2, . . . , qj do
7: Update P (yjt | πjk)←− C

πjk
j (xl)

8: end for
9: end for

10: end for
11: Perform MPE inference onGY to compute ŷl ←− argmaxy∈Y P (y | xl)

12: Update TY ←− TY ∪ {ŷl}
13: end for

17



Experiments



Tabular Data Sets

▶ 17 data sets containing only
continuous feature variables.

▶ 3 mixed data sets containing both
continuous and discrete feature
variables.

▶ The number of class variables range
from 2 to 16.

▶ 5, 6 and 22 discrete feature variables in
the 3 mixed data sets, respectively.

Data Set #CV #Samples #States/CV #Features
Edm 2 154 3 16n

Jura 2 359 4,5 9n

Enb 2 768 2,4 6n

Voice 2 3136 4,2 19n

Song 3 785 3 98n

Flickr 5 12198 3, 4, 3, 4, 4 1536n

Fera 5 14052 6 136n

WQplants 7 1060 4 16n

WQanimals 7 1060 4 16n

Rf1 8 8987 4, 4, 3, 4, 4, 3, 4, 3 64n

Pain 10 9734 2, 5, 4, 2, 2, 5, 2, 5, 2, 2 136n

Disfa 12 13095 5, 5, 6, 3, 4, 4, 5, 4, 4, 4, 6, 4 136n

WaterQuality 14 1060 4 16n

Oes97 16 334 3 263n

Oes10 16 403 3 298n

Scm20d 16 8966 4 61n

Scm1d 16 9803 4 280n

Adult 4 18419 7, 7, 5, 2 5n, 5x

Default 4 28779 2, 7, 4, 2 14n, 6x

Thyroid 7 9172 5, 5, 3, 2, 4, 4, 3 7n, 22x

Table 2: Statistics of the tabular benchmark data sets.
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Image Data Set: PASCAL VOC 2007

▶ 9963 natural images.
▶ 50% for training and 50% for test.

▶ 4 class variables with different
numbers of states.

▶ Remove images that take multiple
values for a class variable
▶ E.g., an image that contains both cats

and dogs.

▶ Resize to 256× 256.

CV States
Person no person, person
Animal no animals, bird, cat, cow, dog, horse, sheep
Vehicle no vehicles, aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor no indoor objects, bottle, chair, dining table, potted plant, sofa, tv/monitor

Table 3: Characteristics of the PASCAL VOC 2007 data set in an MDC
setting.

Figure 5: Example images from the PASCAL VOC 2007 data set.

19



Evaluation Metrics

Given a test set T = {(xl,yl) | 1 ≤ l ≤ L} and an MDC classifier h : X → Y :

Exact Match Score (EMS), which is equivalent to the subset 0/1 loss ℓ0/1.

EMS(h) =
1

L

L∑
l=1

1yl=ŷl

=
1

L

L∑
l=1

(1− ℓ0/1(y
l, ŷl))

(9)

Hamming Score (HS), which is equivalent to the Hamming loss ℓHS.

HS(h) =
1

L

L∑
l=1

1

d

d∑
j=1

1yl
j=ŷl

j

=
1

L

L∑
l=1

(1− ℓHL(y
l, ŷl))

(10)
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Probabilistic MDC Baselines

Binary Relevance (BR)

▶ Assume all class variables are independent of each other.
▶ Train a base classifier for each class variable.

Class Powerset (CP)

▶ Transform each unique combination of class values in the training set into a new meta class.
▶ Train an overall MCC classifier on the transformed meta classes.

Classifier Chain (CC)

▶ Represent the class dependencies using a chain-like structure.
▶ Train a base classifier for each class variable by incorporating previous predictions in the chain.

21



Experimental Results: Tabular Data #1

Data Set
Exact Match Score (EMS)

GBNC (ℓ0/1) BR CC CP
Edm 0.570 ± 0.126 0.475 ± 0.129 0.469 ± 0.126 0.450 ± 0.141 ↑
Jura 0.415 ± 0.054 0.409 ± 0.066 0.368 ± 0.114 0.014 ± 0.042 ↑
Enb 0.561 ± 0.061 0.574 ± 0.090 0.525 ± 0.041 0.371 ± 0.065 ↑
Voice 0.858 ± 0.024 0.836 ± 0.031 ↑ 0.837 ± 0.033 ↑ 0.187 ± 0.024 ↑
Song 0.438 ± 0.049 0.422 ± 0.041 0.392 ± 0.061 ↑ 0.068 ± 0.035 ↑
Flickr 0.289 ± 0.013 0.324 ± 0.012 ↓ 0.325 ± 0.013 ↓ 0.042 ± 0.006 ↑
Fera 0.196 ± 0.012 0.187 ± 0.014 0.193 ± 0.011 0.164 ± 0.015 ↑
WQplants 0.093 ± 0.034 0.093 ± 0.026 0.095 ± 0.029 0.075 ± 0.033 ↑
WQanimals 0.046 ± 0.008 0.047 ± 0.020 0.057 ± 0.015 ↓ 0.023 ± 0.016 ↑
Rf1 0.532 ± 0.018 0.283 ± 0.020 ↑ 0.291 ± 0.018 ↑ 0.062 ± 0.009 ↑
Pain 0.758 ± 0.018 0.751 ± 0.015 ↑ 0.754 ± 0.017 ↑ 0.751 ± 0.015 ↑
Disfa 0.401 ± 0.011 0.393 ± 0.012 ↑ 0.394 ± 0.013 ↑ 0.371 ± 0.011 ↑
WaterQuality 0.005 ± 0.005 0.007 ± 0.006 0.007 ± 0.006 0.006 ± 0.006

Oes97 0.057 ± 0.044 0.051 ± 0.046 0.030 ± 0.014 ↑ 0.000 ↑
Oes10 0.087 ± 0.041 0.089 ± 0.032 0.092 ± 0.034 0.005 ± 0.010 ↑
Scm20d 0.124 ± 0.014 0.045 ± 0.008 ↑ 0.062 ± 0.011 ↑ 0.076 ± 0.012 ↑
Scm1d 0.189 ± 0.010 0.098 ± 0.009 ↑ 0.109 ± 0.008 ↑ 0.091 ± 0.009 ↑
No. of Wins 11 2 5 0

Table 4: Exact match scores (mean ± std.) of each MDC approach (base classifier: logisitic regression). GBNC performs
inference by optimizing ℓ0/1. The best performance is highlighted in bold, and ↑ /↓ indicates whether GBNC is
significantly superior/inferior to other approaches on each data set by using a Wilcoxon signed-rank test.
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Experimental Results: Tabular Data #2

Data Set
Hamming Score (HS)

GBNC (ℓHL) BR CC CP
Edm 0.736 ± 0.091 0.696 ± 0.093 0.685 ± 0.099 0.725 ± 0.071

Jura 0.634 ± 0.029 0.625 ± 0.043 0.607 ± 0.075 0.317 ± 0.051 ↑
Enb 0.781 ± 0.031 0.787 ± 0.045 0.762 ± 0.020 0.685 ± 0.033 ↑
Voice 0.927 ± 0.013 0.915 ± 0.015 ↑ 0.916 ± 0.017 ↑ 0.584 ± 0.013 ↑
Song 0.766 ± 0.028 0.752 ± 0.023 0.738 ± 0.039 ↑ 0.507 ± 0.040 ↑
Flickr 0.784 ± 0.006 0.797 ± 0.006 ↓ 0.796 ± 0.006 ↓ 0.506 ± 0.004 ↑
Fera 0.624 ± 0.010 0.616 ± 0.007 ↑ 0.605 ± 0.009 ↑ 0.475 ± 0.018 ↑
WQplants 0.658 ± 0.013 0.655 ± 0.010 0.650 ± 0.014 0.611 ± 0.024 ↑
WQanimals 0.630 ± 0.018 0.626 ± 0.019 0.624 ± 0.021 ↑ 0.579 ± 0.024 ↑
Rf1 0.902 ± 0.008 0.836 ± 0.004 ↑ 0.835 ± 0.006 ↑ 0.635 ± 0.007 ↑
Pain 0.953 ± 0.003 0.953 ± 0.003 0.951 ± 0.003 ↑ 0.948 ± 0.003 ↑
Disfa 0.897 ± 0.002 0.894 ± 0.003 ↑ 0.894 ± 0.002 ↑ 0.871 ± 0.003 ↑
WaterQuality 0.642 ± 0.018 0.637 ± 0.011 0.639 ± 0.017 0.597 ± 0.018 ↑
Oes97 0.731 ± 0.023 0.716 ± 0.018 ↑ 0.706 ± 0.030 ↑ 0.521 ± 0.032 ↑
Oes10 0.809 ± 0.014 0.801 ± 0.019 0.791 ± 0.021 ↑ 0.605 ± 0.046 ↑
Scm20d 0.685 ± 0.007 0.640 ± 0.008 ↑ 0.613 ± 0.011 ↑ 0.424 ± 0.012 ↑
Scm1d 0.815 ± 0.003 0.763 ± 0.006 ↑ 0.748 ± 0.005 ↑ 0.444 ± 0.011 ↑
No. of Wins 15 3 0 0

Table 5: Hamming scores (mean ± std.) of each MDC approach (base classifier: logisitic regression). GBNC performs
inference by optimizing ℓHL. The best performance is highlighted in bold, and ↑ /↓ indicates whether GBNC is significantly
superior/inferior to other approaches on each data set by using a Wilcoxon signed-rank test.
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Experimental Results: Mixed Data

Data Set
Exact Match Score (EMS)

GBNC (ℓ0/1) BR CC CP
Adult 0.245 ± 0.006 0.274 ± 0.011 ↓ 0.274 ± 0.013 ↓ 0.134 ± 0.007 ↑
Default 0.187 ± 0.005 0.177 ± 0.009 ↑ 0.177 ± 0.012 ↑ 0.060 ± 0.004 ↑
Thyroid 0.784 ± 0.018 0.774 ± 0.014 ↑ 0.768 ± 0.016 ↑ 0.751 ± 0.016 ↑

Table 6: Exact match scores (mean ± std.) of each MDC approach (base classifier: logisitic regression) on mixed data. GBNC
performs inference by optimizing ℓ0/1.

Data Set
Hamming Score (HS)

GBNC (ℓHL) BR CC CP
Adult 0.676 ± 0.004 0.718 ± 0.005 ↓ 0.715 ± 0.005 ↓ 0.585 ± 0.006 ↑
Default 0.666 ± 0.004 0.664 ± 0.007 0.663 ± 0.009 0.561 ± 0.004 ↑
Thyroid 0.966 ± 0.003 0.965 ± 0.002 ↑ 0.964 ± 0.003 ↑ 0.962 ± 0.003 ↑

Table 7: Hamming scores (mean ± std.) of each MDC approach (base classifier: logistic regression) on mixed data. GBNC
performs inference by optimizing ℓHL.

▶ 5 continuous and 5 discrete feature variables in the Adult data set. 24



Experimental Results: Image Data

Metrics
Methods

GBNC (ℓ0/1) GBNC (ℓHL) BR CP
HS 0.897 0.897 0.891 0.887
EMS 0.662 0.662 0.604 0.655

Table 8: Results of each MDC approach (base classifier: ResNet-18) for the PASCAL VOC 2007 data set.

▶ Sparse BN structure since there are only 4 class variables.
▶ Extreme probability estimates due to uncalibrated neural networks.
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Analysis of Learned BN Structures

Y0Person

Y3 Indoor

Y1Animal

Y2Vehicle

Figure 6: Learned BN structure of GBNC on the
PASCAL VOC 2007 data set. The base classifier is
ResNet-18 with weights pre-trained on ImageNet.

Figure 7: Example images from the PASCAL VOC 2007 data set.

▶ The Vehicle dimension appear to be independent.
▶ GBNC tends to consider the mutual relationships between

Indoor, Person and Animal.
26



Conclusion



Contributions

Proposed GBNC, a generalized framework for solving probabilistic MDC tasks with complex types of input.

▶ The first approach that exactly optimizes the CLL function in learning MBNCs.
▶ Introduced a new structural constraint for learning (multi-dimensional) BNCs, which enables the

decomposability of the CLL function over a BN structure.
▶ Proposed a input space partitioning algorithm to discriminatively learn BNC structures and parameters

simultaneously, in which the CLL function is optimized.
▶ GBNC converts the prediction problem into an inference problem in the learned class BN structure, which

allows computing the Bayes-Optimal Prediction under different loss functions.

▶ By employing the pruning rules from [2] and using GOBNILP [1], GBNC is able to exactly and efficiently
learn class BN structures with the penalized CLL as a structure score function.

▶ By using the same partitioning idea, GBNC is able to handle mixed data.
▶ GBNC achieves leading performance among other discriminative MDC approaches.
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Future Work

▶ Structure complexity from feature variables.
▶ Compute Bayes-optimal prediction under more loss functions, such as the Brier score and the AUC score.
▶ Further utilize the discrete features other than input space partitioning.
▶ More efficient inference algorithms.
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Thank You!
Questions?
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Parameter Learning Algorithm

Algorithm 2 Extract training data

Require: Training data D = {(xl,yl) | 1 ≤ l ≤ N}, class variable Yj (1 ≤ j ≤ d), parent set Πj , parent
configuration πjk, parent set Φj

Ensure: Dπjk

j

1: InitializeDπjk

j ←− ∅
2: for l = 1, 2, . . . , N do
3: if πl

j = πjk then
4: UpdateDπjk

j ←− Dπjk

j ∪ {(ϕl
j , yj)}

5: end if
6: end for



Parameter Learning Algorithm

Algorithm 3 Train local probabilistic model

Require: Training data D = {(xl,yl) | 1 ≤ l ≤ N}, class variable Yj (1 ≤ j ≤ d), parent set Π, parent
configuration π, parent set Φ (Φ = X by default if not specified)

Ensure: Local classifier Cπ
j

1: ExtractDπ
j using 2 with inputD, Yj , Π, π and Φ

2: Train Cπ
j usingDπ

j by maximizing the CLL



Parameter Learning Algorithm

Algorithm 4 Parameter learning in G

Require: Training dataD = {(xl,yl) | 1 ≤ l ≤ N}, BN structure G
Ensure: Local classifiers C

1: Initialize C←− ∅
2: for j = 1, 2, . . . , d do
3: Extract Πj and Φj from G
4: for k = 1, 2, . . . , qj do
5: Train local classifier Cπjk

j using 3 with inputD, Yj , Πj , πjk and Φj

6: Update C←− C ∪ C
πjk

j

7: end for
8: end for



Structure Learning Algorithm

Algorithm 5 Structure learning ofGY

Require: Training dataD = {(xl, yl) | 1 ≤ l ≤ N}
Ensure: Class subgraphGY

1: Initialize a score dict S ▷ where S[j][Π] stores the local score for Yj given the parent set Π
2: for j = 1, 2, . . . , d do
3: Initialize candidate parent sets Kj of Yj as the powerset of Y\Yj
4: for u = 1, 2, . . . , |Kj | do

5: Compute PEN(GKju
) ←− − log N

2
(rj − 1)qj ▷ here qj =

∏d
c=1:Yc∈Kju

rc

6: if Kju can be pruned then ▷ using Lemma 2 in the thesis
7: Remove all supersets of Kju from K

8: continue
9: end if

10: Initialize S ←− 0

11: for k = 1, 2, . . . , qj do

12: ExtractD
kjuk
j

using 2 with inputD, Yj , Πj = Kju , πj = kjuk and Φ = X

13: Train local classifier C
kjuk
j

using 3 with inputD, Yj , Πj = Kju , πj = kjuk and Φj = X

14: Update S ←− S + C
kjuk
j

(D
kjuk
j

)

15: end for
16: if Kju can be pruned then ▷ using Lemma 1 in the thesis
17: continue
18: end if
19: S[j][Kju] ←− S

20: end for
21: end for
22: LearnGY using GOBNILP with input S
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