

Generalized Bayesian Network Classifiers

Master's Thesis Presentation

Yang Yang Supervisors: Cassio de Campos, Vu-Linh Nguyen

November 5, 2022

Overview

- 1. Introduction
- 2. Background
- 3. Generalized Bayesian Network Classifiers (GBNCs)
- 4. Experiments
- 5. Conclusion

Introduction

In a nutshell

Multi-Dimensional Classification

- Each instance is characterized by multiple class variables $\mathbf{Y} = \{Y_1, \dots, Y_d\} (d \ge 2)$.
- ► Each class variable can take multiple (≥ 2) values $(r_j = |\mathcal{Y}_j| \ge 2, \forall 1 \le j \le d)$.

TU/e

In a nutshell

Multi-Dimensional Classification

- Each instance is characterized by multiple class variables $\mathbf{Y} = \{Y_1, \dots, Y_d\} (d \ge 2)$.
- ► Each class variable can take multiple (≥ 2) values $(r_j = |\mathcal{Y}_j| \ge 2, \forall 1 \le j \le d)$.

A general MDC task

$$\underbrace{x_1, x_2, \dots, x_m}_{\mathbf{x}} \xrightarrow{h(\mathbf{x})} \underbrace{y_1, y_2, \dots, y_d}_{\mathbf{y}}$$

TU/e

In a nutshell

Multi-Dimensional Classification

- Each instance is characterized by multiple class variables $\mathbf{Y} = \{Y_1, \dots, Y_d\} (d \ge 2)$.
- ► Each class variable can take multiple (≥ 2) values $(r_j = |\mathcal{Y}_j| \ge 2, \forall 1 \le j \le d)$.

In a nutshell

Multi-Dimensional Classification

- ► Each instance is characterized by multiple class variables Y = {Y₁,..., Y_d} (d ≥ 2).
- ► Each class variable can take multiple (≥ 2) values $(r_j = |\mathcal{Y}_j| \ge 2, \forall 1 \le j \le d)$.

Feature Space	Class Space		
	Color	Brand	Туре
	White	BMW	Car
-	White	Mercedes	Truck
	Yellow	Lamborghni	Supercar
:	:		:
		•	
	Red/White	Toyota	Offroad
	?	?	?

 Table 1: Multi-dimensional vehicle image classification.

 Adapted from [3].

TU/e

TU/e

While MDC is hard, it may become harder!

While MDC is hard, it may become harder!

Various types of features can coexist

- Numeric values.
 - ▶ 0.6, 2.36, 17.85, ...
- Binary values.
 - ▶ 0,1
- Ordinal values.
 - Likert scale: Like (0), Like Somewhat (1), Neutral (2), Dislike Somewhat (3), Dislike (4)
- Non-ordinal discrete signals.
 - Color: Red, Blue, Yellow, Green, . . .
 - Gender: Male, Female, . . .

While MDC is hard, it may become harder!

Various types of features can coexist

- Numeric values.
 - ▶ 0.6, 2.36, 17.85, ...
- Binary values.
 - ▶ 0,1
- Ordinal values.
 - Likert scale: Like (0), Like Somewhat (1), Neutral (2), Dislike Somewhat (3), Dislike (4)
- Non-ordinal discrete signals.
 - Color: Red, Blue, Yellow, Green, . . .
 - Gender: Male, Female, . . .

World is multi-modal!

Figure 1: "A cat is playing with a dog."

TU/e

Probabilistic MDC

A Probabilistic MDC Task

Probabilistic MDC

A Probabilistic MDC Task

Probabilistic MDC

Probabilities associated to predictions.

Inference

Optimal predictions under different loss functions.

 y_1, y_2, \ldots, y_d

How to capture the probabilistic relationships between class variables?

TU/e

What is a Bayesian network (BN)?

What is a Bayesian network (BN)?

 $\mathcal{B}=(\mathcal{G},\boldsymbol{\Theta})$

- $\blacktriangleright \ \mathcal{G} = (\mathbf{V}, \mathbf{E}) \text{ is a DAG with } \mathbf{V} \text{ a collection of nodes associated to random variables (RVs) } \mathbf{X}.$
- $\Theta = \{\Theta_i \mid 1 \le i \le m\}$ is a collection of parameters
 - encodes local conditional probability distributions (CPDs) $\{P(X_i \mid \mathbf{Pa}(X_i)) \mid 1 \le i \le m\}$ of **X**.

What is a Bayesian network (BN)?

 $\mathcal{B}=(\mathcal{G},\Theta)$

- $\blacktriangleright \mathcal{G} = (\mathbf{V}, \mathbf{E})$ is a DAG with \mathbf{V} a collection of nodes associated to random variables (RVs) \mathbf{X} .
- $\Theta = \{\Theta_i \mid 1 \le i \le m\}$ is a collection of parameters
 - encodes local conditional probability distributions (CPDs) $\{P(X_i \mid \mathbf{Pa}(X_i)) \mid 1 \le i \le m\}$ of **X**.
- B represents a joint probability distribution over X.

Figure 2: $P_{\mathcal{B}} = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1)P(X_4 \mid X_2, X_3, X_5)P(X_5 \mid X_2, X_3)$

TU/e

Why using a Bayesian network (BN)?

Why using a Bayesian network (BN)?

Advantages of Bayesian Networks (BNs)

- Intuitive graphical formalisms of probabilistic relationships.
- ▶ Interpretable representations of uncertainties supported by probability theory.

Why using a Bayesian network (BN)?

Advantages of Bayesian Networks (BNs)

- Intuitive graphical formalisms of probabilistic relationships.
- Interpretable representations of uncertainties supported by probability theory.

(Multi-dimensional) BNCs are simply BNs applied to (multi-dimensional) classification problems.

Figure 3: An example (M)BNC over $\mathbf{X} = \{X_1, X_2\}$ and $\mathbf{Y} = \{Y_1, Y_2, Y_3\}$.

TU/e

Learning an (M)BNC is essentially learning the underlying Bayesian network.

Learning an (M)BNC is essentially learning the underlying Bayesian network.

Structure Learning: Learning ${\mathcal G}$ from data ${\mathcal D}$

- Constraint-based
 - Employ statistical tests to identify independencies between variables.
- Score-based
 - Define a structure score metric (such as BD scores and the BIC score).
 - Find a structure achieving the maximum score from the structure space.

Learning an (M)BNC is essentially learning the underlying Bayesian network.

Structure Learning: Learning ${\mathcal G}$ from data ${\mathcal D}$

- Constraint-based
 - Employ statistical tests to identify independencies between variables.
- Score-based
 - Define a structure score metric (such as BD scores and the BIC score).
 - Find a structure achieving the maximum score from the structure space.

Parameter Learning: Learning Θ from data $\mathcal D$

- Bayesian Learning
 - Treat parameters as random variables and update Θ by using Bayes' rule: $p(\Theta \mid D) = \frac{p(D|\Theta)p(\Theta)}{p(D)}$.
- Maximum Likelihood Estimation (MLE)
 - Pick parameters that maximize the model's probability of generating D.
 - Given enough data, uncover the real data-generating distribution $P(\mathbf{X}, \mathbf{Y})$.

TU/e

Maximum Likelihood Estimation (MLE)

Pick parameters to make the model to be close to the data-generating distribution $P(\mathbf{X}, \mathbf{Y})$.

Maximum Likelihood Estimation (MLE)

Pick parameters to make the model to be close to the data-generating distribution $P(\mathbf{X}, \mathbf{Y})$.

However, classification is a discriminative or supervised task.

In an (M)BNC, what we need is the conditional distribution $P(\mathbf{Y} \mid \mathbf{X})$ of class variables.

Maximum Likelihood Estimation (MLE)

Pick parameters to make the model to be close to the data-generating distribution $P(\mathbf{X}, \mathbf{Y})$.

However, classification is a discriminative or supervised task.

In an (M)BNC, what we need is the conditional distribution $P(\mathbf{Y} \mid \mathbf{X})$ of class variables.

Maximizing the Conditional Log-Likelihood (CLL)

Given data $\mathcal{D} = \{(\mathbf{x}^l, \mathbf{y}^l) \mid 1 \leq l \leq N\}$, the CLL is a discriminative objective function:

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) \coloneqq \log \prod_{l=1}^{N} p_{\mathcal{B}}(\mathbf{y}^{l} \mid \mathbf{x}^{l}) = \log \prod_{l=1}^{N} \frac{f_{\mathcal{B}}(\mathbf{x}^{l}, \mathbf{y}^{l})}{\sum_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}} f_{\mathcal{B}}(\mathbf{x}^{l}, \mathbf{y}^{l})}$$
(1)

Maximum Likelihood Estimation (MLE)

Pick parameters to make the model to be close to the data-generating distribution $P(\mathbf{X}, \mathbf{Y})$.

However, classification is a discriminative or supervised task.

In an (M)BNC, what we need is the conditional distribution $P(\mathbf{Y} \mid \mathbf{X})$ of class variables.

Maximizing the Conditional Log-Likelihood (CLL)

Given data $\mathcal{D} = \{(\mathbf{x}^l, \mathbf{y}^l) \mid 1 \leq l \leq N\}$, the CLL is a discriminative objective function:

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) \coloneqq \log \prod_{l=1}^{N} p_{\mathcal{B}}(\mathbf{y}^{l} \mid \mathbf{x}^{l}) = \log \prod_{l=1}^{N} \frac{f_{\mathcal{B}}(\mathbf{x}^{l}, \mathbf{y}^{l})}{\sum_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}} f_{\mathcal{B}}(\mathbf{x}^{l}, \mathbf{y}^{l})}$$
(1)

- ▶ Unfortunately, CLL does not decompose over *G* into a separate term for each variable.
- There is no closed-form solution for optimizing parameters to maximize the CLL.

Generalized Bayesian Network Classifiers (GBNCs)

Research Questions

How to discriminatively learn the parameters and the structure of a BNC?

Research Questions

- How to discriminatively learn the parameters and the structure of a BNC?
- How to perform probabilistic inference to compute optimal predictions under different loss functions?

Research Questions

- How to discriminatively learn the parameters and the structure of a BNC?
- How to perform probabilistic inference to compute optimal predictions under different loss functions?
- How to handle mixed data, i.e., continuous and discrete feature variables coexist?

To enable the CLL decomposability

Structural constraints in GBNCs

- > There is no directed edge from class variables to feature variables.
- > There is a directed edge from any feature variable to any class variable.

To enable the CLL decomposability

Structural constraints in GBNCs

- There is no directed edge from class variables to feature variables.
- > There is a directed edge from any feature variable to any class variable.

Figure 4: An example GBNC over \mathbf{X} and $\mathbf{Y} = \{Y_1, Y_2, Y_3, Y_4, Y_5\}$.

Proposition 1: CLL Decomposition

Under our structural constraints, the CLL can be simpilified as

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \sum_{l=1}^{N} \sum_{j=1}^{d} \log P_{\mathcal{B}}(y_j^l \mid \mathbf{pa}(y_j)^l)$$

▶ $\Pi_j = \mathbf{Pa}(Y_j) \cap \mathbf{Y}$, with the number of configurations of Π_j as q_j .

 $\blacktriangleright \ \mathbf{\Phi}_j = \mathbf{Pa}(Y_j) \cap \mathbf{X}.$

The CLL can be further simplified as

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \sum_{l=1}^{N} \sum_{j=1}^{d} \sum_{\substack{k=1:\\ \mathbb{I}_{\pi_{j}^{l} = \pi_{jk}}}^{q_{j}} \log P_{j}^{\pi_{jk}}(y_{j}^{l} \mid \boldsymbol{\phi}_{j}^{l})$$
(3)

TU/e

(2)

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \sum_{l=1}^{N} \sum_{j=1}^{d} \sum_{\substack{k=1:\\ \mathbb{1}_{\pi_{j}^{l} = \pi_{jk}}}^{q_{j}} \log P_{j}^{\pi_{jk}}(y_{j}^{l} \mid \boldsymbol{\phi}_{j}^{l})$$
(4)

In words, we will need q = q₁ + · · · + q_d probabilistic models to represent the distribution P_B(Y | X).
 One for each P^π_{jk}(Y_j | Φ_j) (1 ≤ j ≤ d, 1 ≤ k ≤ q_j).
Discriminative Parameter Learning

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \sum_{l=1}^{N} \sum_{j=1}^{d} \sum_{\substack{k=1:\\ \mathbb{I}_{\pi_{j}^{l} = \pi_{jk}}}}^{q_{j}} \log P_{j}^{\pi_{jk}}(y_{j}^{l} \mid \boldsymbol{\phi}_{j}^{l})$$
(4)

- In words, we will need q = q₁ + · · · + q_d probabilistic models to represent the distribution P_B(Y | X).
 One for each P^π_{jk}(Y_j | Φ_j) (1 ≤ j ≤ d, 1 ≤ k ≤ q_j).
- > The probabilistic relationships between feature variables do not affect the CLL.

Discriminative Parameter Learning

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \sum_{l=1}^{N} \sum_{j=1}^{d} \sum_{\substack{k=1:\\ \mathbb{I}_{\pi_{j}^{l} = \pi_{jk}}}}^{q_{j}} \log P_{j}^{\pi_{jk}}(y_{j}^{l} \mid \boldsymbol{\phi}_{j}^{l})$$
(4)

- In words, we will need q = q₁ + · · · + q_d probabilistic models to represent the distribution P_B(Y | X).
 One for each P^π_{jk}(Y_j | Φ_j) (1 ≤ j ≤ d, 1 ≤ k ≤ q_j).
- > The probabilistic relationships between feature variables do not affect the CLL.
- Although we assume any $Y \in \mathbf{Y}$ is connected to all $X \in \mathbf{X}$

Discriminative Parameter Learning

$$\operatorname{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \sum_{l=1}^{N} \sum_{j=1}^{d} \sum_{\substack{k=1:\\ \mathbb{I}_{\pi_{j}^{l} = \pi_{jk}}}}^{q_{j}} \log P_{j}^{\pi_{jk}}(y_{j}^{l} \mid \boldsymbol{\phi}_{j}^{l})$$
(4)

- In words, we will need q = q₁ + · · · + q_d probabilistic models to represent the distribution P_B(Y | X).
 One for each P^π_{jk}(Y_j | Φ_j) (1 ≤ j ≤ d, 1 ≤ k ≤ q_j).
- > The probabilistic relationships between feature variables do not affect the CLL.
- Although we assume any $Y \in \mathbf{Y}$ is connected to all $X \in \mathbf{X}$
 - Learning a base probabilistic model $C_j^{\pi_{jk}}$ for each $P_j^{\pi_{jk}}(y_j \mid \phi_j)$ is essentially a feature selection!

Discriminative Parameter Learning: Input Space Partitioning

How do we learn a base probabilistic model $C_i^{\pi_{jk}}$?

 \mathcal{D}

Discriminative Parameter Learning: Input Space Partitioning

How do we learn a base probabilistic model $C_i^{\pi_{jk}}$?

• Extract $\mathcal{D}_{j}^{\pi_{jk}}$ from \mathcal{D} according to π_{jk} .

 \mathcal{D}

 $\mathcal{D}_1^{\pi_{1k}}$

Discriminative Parameter Learning: Input Space Partitioning

How do we learn a base probabilistic model $C_j^{\pi_{jk}}$?

• Extract $\mathcal{D}_j^{\pi_{jk}}$ from \mathcal{D} according to π_{jk} .

 \mathcal{D}

• Train $C_j^{\pi_{jk}}$ using $\mathcal{D}_j^{\pi_{jk}}$ by iteratively optimizing $\sum_{l=1}^N \log P_j^{\pi_{jk}}(y_j^l \mid \phi_j^l)$.

 $\mathcal{D}_1^{\pi_{1k}}$

 $C_{1}^{\pi_{1k}}$

TU/e

The probabilistic relationships between feature variables do not affect the CLL.

• Learning G is essentially learning the class subgraph $G_{\mathbf{Y}}$.

The probabilistic relationships between feature variables do not affect the CLL.

• Learning G is essentially learning the class subgraph $G_{\mathbf{Y}}$.

A score-based structure learning approach

Use a penalized CLL score as a (decomposable) structure score function:

$$S(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \text{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) + \text{PEN}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D})$$
$$= \sum_{j=1}^{d} (\text{CLL}(\mathcal{G}_{\Pi_{j}}, \Theta_{j} \mid \mathcal{D}) + \text{PEN}(\mathcal{G}_{\Pi_{j}}, \Theta_{j} \mid \mathcal{D}))$$
$$= \sum_{j=1}^{d} S(\mathcal{G}_{\Pi_{j}}, \Theta_{j} \mid \mathcal{D})$$

where $\operatorname{PEN}(\mathcal{G}_{\Pi_j}, \Theta_j \mid \mathcal{D}) = -\frac{\log N}{2}(r_j - 1)q_j$.

(5)

The probabilistic relationships between feature variables do not affect the CLL.

• Learning G is essentially learning the class subgraph $G_{\mathbf{Y}}$.

A score-based structure learning approach

Use a penalized CLL score as a (decomposable) structure score function:

$$S(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) = \text{CLL}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D}) + \text{PEN}(\mathcal{G}, \boldsymbol{\Theta} \mid \mathcal{D})$$
$$= \sum_{j=1}^{d} (\text{CLL}(\mathcal{G}_{\boldsymbol{\Pi}_{j}}, \boldsymbol{\Theta}_{j} \mid \mathcal{D}) + \text{PEN}(\mathcal{G}_{\boldsymbol{\Pi}_{j}}, \boldsymbol{\Theta}_{j} \mid \mathcal{D}))$$
$$= \sum_{j=1}^{d} S(\mathcal{G}_{\boldsymbol{\Pi}_{j}}, \boldsymbol{\Theta}_{j} \mid \mathcal{D})$$

where $\operatorname{PEN}(\mathcal{G}_{\Pi_j}, \Theta_j \mid \mathcal{D}) = -\frac{\log N}{2}(r_j - 1)q_j$.

• We can further prune the search space of potential Π_j for Y_j by using rules from [2].

(5)

Mixed Data

Continuous and discrete feature variables coexist.

Mixed Data

Continuous and discrete feature variables coexist.

How to handle discrete features?

Mixed Data

Continuous and discrete feature variables coexist.

- How to handle discrete features?
- $\blacktriangleright \Lambda_j = \mathbf{Pa}(Y_j) \cap \mathbf{X}^D.$
- Treat discrete feature variables as "special" class variables.
- Use discrete features to do further input space partitioning!

TU/e

Given a loss function $\ell: \boldsymbol{\mathcal{Y}} \times \boldsymbol{\mathcal{Y}} \to \mathbb{R}_+$ and an input $\mathbf{x} \in \boldsymbol{\mathcal{X}}$, the Bayes-Optimal Prediction (BOP) $\hat{\mathbf{y}}$ is

$$\hat{\mathbf{y}} = \operatorname*{arg\,min}_{\mathbf{y}' \in \boldsymbol{\mathcal{Y}}} \sum_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}} \ell(\mathbf{y}, \mathbf{y}') P(\mathbf{y} \mid \mathbf{x})$$
(6)

$$\hat{\mathbf{y}} = \operatorname*{arg\,min}_{\mathbf{y}' \in \boldsymbol{\mathcal{Y}}} \sum_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}} \ell(\mathbf{y}, \mathbf{y}') P(\mathbf{y} \mid \mathbf{x})$$
(6)

Subset 0/1 Loss: $\ell_{0/1}(\mathbf{y}, \hat{\mathbf{y}}) = \mathbb{1}_{\mathbf{y} \neq \hat{\mathbf{y}}}$

Most Probable Explanation (MPE) Inference for Y.

$$\hat{\mathbf{y}} = \operatorname*{arg\,min}_{\mathbf{y}' \in \boldsymbol{\mathcal{Y}}} \sum_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}} \mathbb{1}_{\mathbf{y} \neq \mathbf{y}'} P(\mathbf{y} \mid \mathbf{x}) = \operatorname*{arg\,max}_{\mathbf{y}' \in \boldsymbol{\mathcal{Y}}} P(\mathbf{y}' \mid \mathbf{x})$$

Hamming Loss: $\ell_{\mathrm{HL}}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{j=1}^{d} \mathbb{1}_{y_j \neq \hat{y}_j}$

Maximum A Posteriori (MAP) Inference for each $Y \in \mathbf{Y}$.

$$\begin{split} \hat{\mathbf{y}} &= \{\hat{y}_j \mid 1 \leq j \leq d\}\\ \text{where, } \hat{y}_j &= \operatorname*{arg\,min}_{y' \in \mathcal{Y}_j} \sum_{y \in \mathcal{Y}_j} \mathbb{1}_{y \neq y'} P(y \mid \mathbf{x}) = \operatorname*{arg\,max}_{y' \in \mathcal{Y}_j} P(y' \mid \mathbf{x}) \end{split}$$

(7)

(8)

Algorithm 1 BOP under the subset 0/1 loss

Require: Test set $\mathcal{T} = \{\mathbf{x}^l \mid 1 \leq l \leq L\}$, local probabilistic classifiers **C**, class subgraph $\mathcal{G}_{\mathbf{Y}}$ **Ensure:** The set of predictions $\mathcal{T}_{\mathbf{Y}} = \{\hat{\mathbf{y}}^{l} \mid 1 \leq l \leq L\}$ 1: Initialize $\mathcal{T}_{\mathbf{Y}} \leftarrow \emptyset$ 2: Initialize CPT of $\mathcal{G}_{\mathbf{Y}}: P(y_{jt} \mid \pi_{jk}) \longleftarrow 0$, with all $j \in \{1, 2, ..., d\}, t \in \{1, 2, ..., r_i\}$ and $k \in \{1, 2, ..., q_i\}$ 3: for l = 1, 2, ..., L do for i = 1, 2, ..., d do 4: 5: for $t = 1, 2, ..., r_i$ do for $k = 1, 2, ..., a_i$ do 6: Update $P(y_{jt} \mid \boldsymbol{\pi}_{jk}) \longleftarrow \mathsf{C}_{j}^{\boldsymbol{\pi}_{jk}}(\mathbf{x}^{l})$ 7: 8. end for end for ٩. 10: end for 11: Perform MPE inference on $\mathcal{G}_{\mathbf{Y}}$ to compute $\hat{\mathbf{y}}^l \leftarrow \arg \max_{\mathbf{y} \in \mathcal{Y}} P(\mathbf{y} \mid \mathbf{x}^l)$ Update $\mathcal{T}_{\mathbf{Y}} \leftarrow \mathcal{T}_{\mathbf{Y}} \cup \{\hat{\mathbf{y}}^l\}$ 12: 13: end for

Experiments

Tabular Data Sets

- 17 data sets containing only continuous feature variables.
- 3 mixed data sets containing both continuous and discrete feature variables.
- The number of class variables range from 2 to 16.
- 5, 6 and 22 discrete feature variables in the 3 mixed data sets, respectively.

Data Set	#CV	#Samples	#States/CV	#Features
Edm	2	154	3	16n
Jura	2	359	4,5	9n
Enb	2	768	2,4	6n
Voice	2	3136	4,2	19n
Song	3	785	3	98n
Flickr	5	12198	3, 4, 3, 4, 4	1536n
Fera	5	14052	6	136n
WQplants	7	1060	4	16n
WQanimals	7	1060	4	16n
Rf1	8	8987	4, 4, 3, 4, 4, 3, 4, 3	64n
Pain	10	9734	2, 5, 4, 2, 2, 5, 2, 5, 2, 2	136n
Disfa	12	13095	5, 5, 6, 3, 4, 4, 5, 4, 4, 4, 6, 4	136n
WaterQuality	14	1060	4	16n
Oes97	16	334	3	263n
Oes10	16	403	3	298n
Scm20d	16	8966	4	61n
Scm1d	16	9803	4	280n
Adult	4	18419	7, 7, 5, 2	5n, 5x
Default	4	28779	2, 7, 4, 2	14n, 6x
Thyroid	7	9172	5, 5, 3, 2, 4, 4, 3	7n, 22x

Table 2: Statistics of the tabular benchmark data sets.

Image Data Set: PASCAL VOC 2007

CV	States
Person	no person, person
Animal	no animals, bird, cat, cow, dog, horse, sheep
Vehicle	no vehicles, aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor	no indoor objects, bottle, chair, dining table, potted plant, sofa, tv/monitor

Table 3: Characteristics of the PASCAL VOC 2007 data set in an MDCsetting.

Figure 5: Example images from the PASCAL VOC 2007 data set.

- 9963 natural images.
 - 50% for training and 50% for test.
- 4 class variables with different numbers of states.
- Remove images that take multiple values for a class variable
 - E.g., an image that contains both cats and dogs.
- ▶ Resize to 256 × 256.

Evaluation Metrics

(9)

Given a test set $\mathcal{T} = \{(\mathbf{x}^l, \mathbf{y}^l) \mid 1 \leq l \leq L\}$ and an MDC classifier $h : \mathcal{X} \to \mathcal{Y}$:

Exact Match Score (EMS), which is equivalent to the subset 0/1 loss $\ell_{0/1}$.

$$\begin{split} \mathrm{EMS}(h) &= \frac{1}{L} \sum_{l=1}^{L} \mathbb{1}_{\mathbf{y}^{l} = \hat{\mathbf{y}}^{l}} \\ &= \frac{1}{L} \sum_{l=1}^{L} (1 - \ell_{0/1}(\mathbf{y}^{l}, \hat{\mathbf{y}}^{l})) \end{split}$$

Hamming Score (HS), which is equivalent to the Hamming loss $\ell_{\rm HS}$.

$$HS(h) = \frac{1}{L} \sum_{l=1}^{L} \frac{1}{d} \sum_{j=1}^{d} \mathbb{1}_{y_{j}^{l} = \hat{y}_{j}^{l}}$$

$$= \frac{1}{L} \sum_{l=1}^{L} (1 - \ell_{HL}(\mathbf{y}^{l}, \hat{\mathbf{y}}^{l}))$$
(10)

Probabilistic MDC Baselines

Binary Relevance (BR)

- Assume all class variables are independent of each other.
- Train a base classifier for each class variable.

Class Powerset (CP)

- > Transform each unique combination of class values in the training set into a new meta class.
- Train an overall MCC classifier on the transformed meta classes.

Classifier Chain (CC)

- Represent the class dependencies using a chain-like structure.
- > Train a base classifier for each class variable by incorporating previous predictions in the chain.

Experimental Results: Tabular Data #1

Data Set	Exact Match Score (EMS)				
	GBNC $(\ell_{0/1})$	BR	СС	СР	
Edm	0.570 ± 0.126	0.475 ± 0.129	0.469 ± 0.126	$0.450 \pm 0.141 \uparrow$	
Jura	0.415 ± 0.054	0.409 ± 0.066	0.368 ± 0.114	$0.014 \pm 0.042 \uparrow$	
Enb	0.561 ± 0.061	0.574 ± 0.090	0.525 ± 0.041	$0.371 \pm 0.065 \uparrow$	
Voice	0.858 ± 0.024	$0.836 \pm 0.031 \uparrow$	0.837 ± 0.033 ↑	$0.187 \pm 0.024 \uparrow$	
Song	0.438 ± 0.049	0.422 ± 0.041	$0.392 \pm 0.061 \uparrow$	0.068 ± 0.035 ↑	
Flickr	0.289 ± 0.013	$0.324 \pm 0.012 \downarrow$	$0.325\pm0.013\downarrow$	$0.042 \pm 0.006 \uparrow$	
Fera	0.196 ± 0.012	0.187 ± 0.014	0.193 ± 0.011	$0.164 \pm 0.015 \uparrow$	
WQplants	0.093 ± 0.034	0.093 ± 0.026	0.095 ± 0.029	0.075 ± 0.033 ↑	
WQanimals	0.046 ± 0.008	0.047 ± 0.020	$0.057\pm0.015\downarrow$	$0.023 \pm 0.016 \uparrow$	
Rf1	0.532 ± 0.018	0.283 ± 0.020 ↑	$0.291 \pm 0.018 \uparrow$	$0.062 \pm 0.009 \uparrow$	
Pain	0.758 ± 0.018	$0.751 \pm 0.015 \uparrow$	0.754 ± 0.017 ↑	$0.751 \pm 0.015 \uparrow$	
Disfa	0.401 ± 0.011	$0.393 \pm 0.012 \uparrow$	0.394 ± 0.013 ↑	0.371 ± 0.011 ↑	
WaterQuality	0.005 ± 0.005	0.007 ± 0.006	0.007 ± 0.006	0.006 ± 0.006	
Oes97	0.057 ± 0.044	0.051 ± 0.046	$0.030 \pm 0.014 \uparrow$	0.000 1	
Oes10	0.087 ± 0.041	0.089 ± 0.032	0.092 ± 0.034	$0.005 \pm 0.010 \uparrow$	
Scm20d	0.124 ± 0.014	0.045 ± 0.008 ↑	$0.062 \pm 0.011 \uparrow$	$0.076 \pm 0.012 \uparrow$	
Scm1d	0.189 ± 0.010	0.098 ± 0.009 ↑	0.109 ± 0.008 ↑	$0.091 \pm 0.009 \uparrow$	
No. of Wins	11	2	5	0	

Table 4: Exact match scores (mean \pm std.) of each MDC approach (**base classifier:** *logisitic regression*). GBNC performs inference by **optimizing** $\ell_{0/1}$. The best performance is highlighted in bold, and \uparrow /\downarrow indicates whether GBNC is significantly superior/inferior to other approaches on each data set by using a *Wilcoxon signed-rank test*.

Experimental Results: Tabular Data #2

Data Set	Hamming Score (HS)				
	GBNC ($\ell_{\rm HL}$)	BR	СС	CP	
Edm	0.736 ± 0.091	0.696 ± 0.093	0.685 ± 0.099	0.725 ± 0.071	
Jura	0.634 ± 0.029	0.625 ± 0.043	0.607 ± 0.075	$0.317 \pm 0.051 \uparrow$	
Enb	0.781 ± 0.031	0.787 ± 0.045	0.762 ± 0.020	$0.685 \pm 0.033 \uparrow$	
Voice	0.927 ± 0.013	$0.915 \pm 0.015 \uparrow$	0.916 ± 0.017 ↑	0.584 ± 0.013 ↑	
Song	0.766 ± 0.028	0.752 ± 0.023	0.738 ± 0.039 ↑	0.507 ± 0.040 ↑	
Flickr	0.784 ± 0.006	$0.797\pm0.006\downarrow$	$0.796 \pm 0.006 \downarrow$	0.506 ± 0.004 ↑	
Fera	0.624 ± 0.010	0.616 ± 0.007 ↑	$0.605 \pm 0.009 \uparrow$	0.475 ± 0.018 ↑	
WQplants	0.658 ± 0.013	0.655 ± 0.010	0.650 ± 0.014	$0.611 \pm 0.024 \uparrow$	
WQanimals	0.630 ± 0.018	0.626 ± 0.019	$0.624 \pm 0.021 \uparrow$	0.579 ± 0.024 ↑	
Rf1	0.902 ± 0.008	0.836 ± 0.004 ↑	$0.835 \pm 0.006 \uparrow$	0.635 ± 0.007 ↑	
Pain	0.953 ± 0.003	0.953 ± 0.003	0.951 ± 0.003 ↑	0.948 ± 0.003 ↑	
Disfa	0.897 ± 0.002	0.894 ± 0.003 ↑	$0.894 \pm 0.002 \uparrow$	$0.871 \pm 0.003 \uparrow$	
WaterQuality	0.642 ± 0.018	0.637 ± 0.011	0.639 ± 0.017	0.597 ± 0.018 ↑	
Oes97	0.731 ± 0.023	$0.716 \pm 0.018 \uparrow$	0.706 ± 0.030 ↑	$0.521 \pm 0.032 \uparrow$	
Oes10	0.809 ± 0.014	0.801 ± 0.019	$0.791 \pm 0.021 \uparrow$	0.605 ± 0.046 \uparrow	
Scm20d	0.685 ± 0.007	0.640 ± 0.008 ↑	$0.613 \pm 0.011 \uparrow$	0.424 ± 0.012 \uparrow	
Scm1d	0.815 ± 0.003	0.763 ± 0.006 ↑	0.748 ± 0.005 ↑	0.444 ± 0.011 ↑	
No. of Wins	15	3	0	0	

Table 5: Hamming scores (mean \pm std.) of each MDC approach (base classifier: logisitic regression). GBNC performsinference by optimizing ℓ_{HL} . The best performance is highlighted in bold, and \uparrow /\downarrow indicates whether GBNC is significantlysuperior/inferior to other approaches on each data set by using a Wilcoxon signed-rank test.

Data Set	Exact Match Score (EMS)				
	GBNC $(\ell_{0/1})$	BR	СС	CP	
Adult	0.245 ± 0.006	$0.274\pm0.011\downarrow$	$0.274\pm0.013\downarrow$	0.134 ± 0.007 ↑	
Default	0.187 ± 0.005	$0.177 \pm 0.009 \uparrow$	$0.177 \pm 0.012 \uparrow$	0.060 ± 0.004 ↑	
Thyroid	0.784 ± 0.018	0.774 ± 0.014 \uparrow	$0.768 \pm 0.016 \uparrow$	0.751 ± 0.016 \uparrow	

Table 6: Exact match scores (mean \pm std.) of each MDC approach (base classifier: *logisitic regression*) on mixed data. GBNCperforms inference by optimizing $\ell_{0/1}$.

Data Set		Hamming S	Score (HS)	
	$GBNC\left(\ell_{\mathrm{HL}}\right)$	BR	CC	CP
Adult	0.676 ± 0.004	$0.718\pm0.005\downarrow$	$0.715 \pm 0.005 \downarrow$	0.585 ± 0.006 ↑
Default	0.666 ± 0.004	0.664 ± 0.007	0.663 ± 0.009	$0.561 \pm 0.004 \uparrow$
Thyroid	0.966 ± 0.003	$0.965 \pm 0.002 \uparrow$	$0.964 \pm 0.003 \uparrow$	0.962 ± 0.003 \uparrow

Table 7: Hamming scores (mean \pm std.) of each MDC approach (base classifier: *logistic regression*) on mixed data. GBNC performs inference by **optimizing** ℓ_{HL} .

5 continuous and 5 discrete feature variables in the Adult data set.

Experimental Results: Image Data

Metrics	Methods				
	GBNC ($\ell_{0/1}$)	GBNC ($\ell_{\rm HL})$	BR	СР	
HS	0.897	0.897	0.891	0.887	
EMS	0.662	0.662	0.604	0.655	

Table 8: Results of each MDC approach (base classifier: ResNet-18) for the PASCAL VOC 2007 data set.

- Sparse BN structure since there are only 4 class variables.
- Extreme probability estimates due to uncalibrated neural networks.

Analysis of Learned BN Structures

Figure 7: Example images from the PASCAL VOC 2007 data set.

Figure 6: Learned BN structure of GBNC on the PASCAL VOC 2007 data set. The base classifier is *ResNet-18* with weights pre-trained on ImageNet.

- The Vehicle dimension appear to be independent.
- GBNC tends to consider the mutual relationships between Indoor, Person and Animal.

Conclusion

Contributions

Proposed GBNC, a generalized framework for solving probabilistic MDC tasks with complex types of input.

- ▶ The first approach that exactly optimizes the CLL function in learning MBNCs.
- Introduced a new structural constraint for learning (multi-dimensional) BNCs, which enables the decomposability of the CLL function over a BN structure.
- Proposed a input space partitioning algorithm to discriminatively learn BNC structures and parameters simultaneously, in which the CLL function is optimized.
- GBNC converts the prediction problem into an inference problem in the learned class BN structure, which allows computing the Bayes-Optimal Prediction under different loss functions.

Contributions

Proposed GBNC, a generalized framework for solving probabilistic MDC tasks with complex types of input.

- ▶ The first approach that exactly optimizes the CLL function in learning MBNCs.
- Introduced a new structural constraint for learning (multi-dimensional) BNCs, which enables the decomposability of the CLL function over a BN structure.
- Proposed a input space partitioning algorithm to discriminatively learn BNC structures and parameters simultaneously, in which the CLL function is optimized.
- GBNC converts the prediction problem into an inference problem in the learned class BN structure, which allows computing the Bayes-Optimal Prediction under different loss functions.
- By employing the pruning rules from [2] and using GOBNILP [1], GBNC is able to exactly and efficiently learn class BN structures with the penalized CLL as a structure score function.
- By using the same partitioning idea, GBNC is able to handle mixed data.
- ► GBNC achieves leading performance among other discriminative MDC approaches.

Future Work

- Structure complexity from feature variables.
- Compute Bayes-optimal prediction under more loss functions, such as the Brier score and the AUC score.
- Further utilize the discrete features other than input space partitioning.
- More efficient inference algorithms.

Thank You! Questions?

Algorithm 2 Extract training data

Require: Training data $\mathcal{D} = \{(\mathbf{x}^l, \mathbf{y}^l) \mid 1 \leq l \leq N\}$, class variable Y_j $(1 \leq j \leq d)$, parent set Π_j , parent configuration π_{jk} , parent set Φ_j **Ensure:** $\mathcal{D}_j^{\pi_{jk}}$ 1: Initialize $\mathcal{D}_j^{\pi_{jk}} \longleftarrow \emptyset$ 2: for l = 1, 2, ..., N do 3: if $\pi_j^l = \pi_{jk}$ then 4: Update $\mathcal{D}_j^{\pi_{jk}} \longleftarrow \mathcal{D}_j^{\pi_{jk}} \cup \{(\phi_j^l, y_j)\}$ 5: end if 6: end for

Algorithm 3 Train local probabilistic model

Require: Training data $\mathcal{D} = \{(\mathbf{x}^l, \mathbf{y}^l) \mid 1 \leq l \leq N\}$, class variable Y_j $(1 \leq j \leq d)$, parent set Π , parent configuration π , parent set Φ ($\Phi = \mathbf{X}$ by default if not specified)

Ensure: Local classifier C_j^{π}

- 1: Extract \mathcal{D}_{j}^{π} using 2 with input $\mathcal{D}, Y_{j}, \Pi, \pi$ and Φ
- 2: Train C_j^{π} using \mathcal{D}_j^{π} by maximizing the CLL

Algorithm 4 Parameter learning in ${\cal G}$

Require: Training data $\mathcal{D} = \{(\mathbf{x}^l, \mathbf{y}^l) \mid 1 \le l \le N\}$, BN structure \mathcal{G} **Ensure:** Local classifiers **C** 1: Initialize **C** $\longleftarrow \emptyset$ 2: **for** j = 1, 2, ..., d **do** 3: Extract Π_j and Φ_j from \mathcal{G} 4: **for** $k = 1, 2, ..., q_j$ **do** 5: Train local classifier $C_j^{\pi_{jk}}$ using 3 with input $\mathcal{D}, Y_j, \Pi_j, \pi_{jk}$ and Φ_j 6: Update **C** \longleftarrow **C** $\cup C_j^{\pi_{jk}}$ 7: **end for**

8: end for

Structure Learning Algorithm

```
Algorithm 5 Structure learning of \mathcal{G}_{\mathbf{V}}
Require: Training data \mathcal{D} = \{ (\mathbf{x}^l, \mathbf{y}^l) \mid 1 \leq l \leq N \}
Ensure: Class subgraph \mathcal{G}_{\mathbf{V}}
 1: Initialize a score dict S \triangleright where S[j][I] stores the local score for Y_{i} given the parent set I
 2: for j = 1, 2, \ldots, d do
           Initialize candidate parent sets \mathbf{K}_i of Y_i as the powerset of \mathbf{Y} \setminus Y_i
 3:
 4:
           for u = 1, 2, ..., |K_{i}| do
                 Compute \operatorname{PEN}(\mathcal{G}_{\mathbf{K}_{j,i}}) \leftarrow -\frac{\log N}{2}(r_j-1)q_j \quad \triangleright \operatorname{here} q_j = \prod_{c=1}^d Y_c \in \mathbf{K}_{j,i}, r_c
 5:
                 if K day can be pruned then > using Lemma 2 in the thesis
 6:
 7:
                        Remove all supersets of K_{i\mu} from K
 8:
                        continue
 9:
                  end if
10:
                  Initialize S \leftarrow = 0
11:
                  for k = 1, 2, ..., q_{d} do
                       Extract \mathcal{D}_{i}^{\mathbf{k}_{j} u k} using 2 with input \mathcal{D}, Y_{j}, \mathbf{\Pi}_{j} = \mathbf{K}_{j u}, \mathbf{\pi}_{j} = \mathbf{k}_{j u k} and \mathbf{\Phi} = \mathbf{X}
12:
                       Train local classifier C_{i}^{\mathbf{k}_{j}uk} using 3 with input \mathcal{D}, Y_{j}, \mathbf{\Pi}_{j} = \mathbf{K}_{ju}, \pi_{j} = \mathbf{k}_{juk} and \Phi_{j} = \mathbf{X}
13:
                       Update S \leftarrow S + C<sup>k</sup><sub>j</sub><sup>uk</sup> (\mathcal{D}_{i}^{\mathbf{k}juk})
14:
15
                 end for
16:
                 if K i a can be pruned then > using Lemma 1 in the thesis
17:
                        continue
18.
                 end if
19:
                  \mathbf{S}[j][\mathbf{K}_{ju}] \leftarrow S
20:
           end for
21: end for
22: Learn Gv using GOBNILP with input S
```


References I

J. Cussens

Gobnilp: Learning bayesian network structure with integer programming.

In International Conference on Probabilistic Graphical Models, pages 605–608. PMLR, 2020.

C. P. de Campos, M. Scanagatta, G. Corani, and M. Zaffalon. Entropy-based pruning for learning bayesian networks using BIC. Artif. Intell., 260:42-50, 2018.

B.-B. Jia and M.-L. Zhang. Decomposition-based classifier chains for multi-dimensional classification.

IEEE Transactions on Artificial Intelligence, 3(2):176–191, 2021.